If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-150=0
a = 10; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·10·(-150)
Δ = 6000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6000}=\sqrt{400*15}=\sqrt{400}*\sqrt{15}=20\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{15}}{2*10}=\frac{0-20\sqrt{15}}{20} =-\frac{20\sqrt{15}}{20} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{15}}{2*10}=\frac{0+20\sqrt{15}}{20} =\frac{20\sqrt{15}}{20} =\sqrt{15} $
| y=-|-3-2| | | x^2=-4/16 | | 7-3g=-7g-9 | | 3(x-5)=30÷5 | | 3/5(3m+15)=-12 | | 4x+1=3+7 | | 7=-35d | | 10m-32=5m+23 | | -2+p+2=-p+10 | | 8-m=2m-10 | | 10+3p=7p-10 | | 0=-1/2x | | 24=3(q-5) | | 7(-10+2x)=-56 | | 2(x-4)+3=6x-5-4x | | 24=3(q-5 | | 6(2x-1)=7 | | 3+4.75a=21 | | 7q-4=31 | | 7y-21=-37+-3y | | 0=-7/3x-3 | | -2b=-3-3b | | 4(x-3)=6x=3x+8-x | | -8c=9-5c | | 5x+17-3x-4=180 | | 5r+25=8r-56 | | 5x-3x+4=3+8 | | 6r,r=5 | | 3/5+3.5(z-4)=9.3 | | y=0.4×+6.9 | | 6x+2=5+4 | | 4x-30-12x=5x20 |